fluoxetine hydrochloride
Dosage Form: capsule
Selfemra® (fluoxetine capsules USP)
7225
7226
Rx only
Suicidality and Antidepressant Drugs
Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Selfemra®or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Selfemra® is not approved for use in pediatric patients with MDD and obsessive compulsive disorder (OCD) (see WARNINGS; PRECAUTIONS, Information for Patients; and PRECAUTIONS, Pediatric Use).
Selfemra Description
Selfemra® (fluoxetine hydrochloride) is a selective serotonin reuptake inhibitor (SSRI) for oral administration; fluoxetine was initially developed and marketed as an antidepressant (Prozac®, fluoxetine capsules, USP). It is designated (±)-N-methyl-3-phenyl-3-[(α,α,α-trifluoro-p-tolyl)oxy]propylamine hydrochloride and has the following structural formula:
C17H18F3NO•HCl M.W. 345.79
Fluoxetine hydrochloride is a white to off-white crystalline solid with a solubility of 14 mg/mL in water.
Each capsule contains fluoxetine hydrochloride equivalent to 10 mg (32.3 μmol) or 20 mg (64.7 μmol) of fluoxetine. In addition, each capsule contains the following inactive ingredients: black iron oxide, colloidal silicon dioxide, FD&C blue #2, FD&C red #3, gelatin, pregelatinized corn starch, shellac, simethicone, and titanium dioxide. Additionally, the 20 mg capsule also contains red iron oxide. The imprinting ink may contain antifoam DC, propylene glycol, and soya lecithin.
Selfemra - Clinical Pharmacology
Pharmacodynamics
The mechanism of action of fluoxetine in premenstrual dysphoric disorder (PMDD) is unknown, but is presumed to be linked to its inhibition of CNS neuronal uptake of serotonin. Studies at clinically relevant doses in humans have demonstrated that fluoxetine blocks the uptake of serotonin into human platelets. Studies in animals also suggest that fluoxetine is a much more potent uptake inhibitor of serotonin than of norepinephrine.
Antagonism of muscarinic, histaminergic, and α1-adrenergic receptors has been hypothesized to be associated with various anticholinergic, sedative, and cardiovascular effects of certain psychoactive drugs. Fluoxetine has little affinity for these receptors.
Absorption, Distribution, Metabolism, and Excretion
Systemic Bioavailability
In humans, following a single oral 40 mg dose, peak plasma concentrations of fluoxetine from 15 to 55 ng/mL are observed after 6 to 8 hours.
Food does not appear to affect the systemic bioavailability of fluoxetine, although it may delay its absorption inconsequentially. Thus, fluoxetine may be administered with or without food.
Protein Binding
Over the concentration range from 200 to 1000 ng/mL, approximately 94.5% of fluoxetine is bound in vitro to human serum proteins, including albumin and α1-glycoprotein. The interaction between fluoxetine and other highly protein-bound drugs has not been fully evaluated, but may be important (see PRECAUTIONS).
Enantiomers
Fluoxetine is a racemic mixture (50/50) of R-fluoxetine and S-fluoxetine enantiomers. In animal models, both enantiomers are specific and potent serotonin uptake inhibitors with essentially equivalent pharmacologic activity. The S-fluoxetine enantiomer is eliminated more slowly and is the predominant enantiomer present in plasma at steady state.
Metabolism
Fluoxetine is extensively metabolized in the liver to norfluoxetine and a number of other unidentified metabolites. The only identified active metabolite, norfluoxetine, is formed by demethylation of fluoxetine. In animal models, S-norfluoxetine is a potent and selective inhibitor of serotonin uptake and has activity essentially equivalent to R- or S-fluoxetine. R-norfluoxetine is significantly less potent than the parent drug in the inhibition of serotonin uptake. The primary route of elimination appears to be hepatic metabolism to inactive metabolites excreted by the kidney.
Clinical Issues Related to Metabolism/Elimination
The complexity of the metabolism of fluoxetine has several consequences that may potentially affect fluoxetine's clinical use.
Variability in metabolism
A subset (about 7%) of the population has reduced activity of the drug metabolizing enzyme cytochrome P450 2D6 (CYP2D6). Such individuals are referred to as "poor metabolizers" of drugs such as debrisoquin, dextromethorphan, and the tricyclic antidepressants (TCAs). In a study involving labeled and unlabeled enantiomers administered as a racemate, these individuals metabolized S-fluoxetine at a slower rate and thus achieved higher concentrations of S-fluoxetine. Consequently, concentrations of S-norfluoxetine at steady state were lower. The metabolism of R-fluoxetine in these poor metabolizers appears normal. When compared with normal metabolizers, the total sum at steady state of the plasma concentrations of the 4 active enantiomers was not significantly greater among poor metabolizers. Thus, the net pharmacodynamic activities were essentially the same. Alternative, nonsaturable pathways (non-2D6) also contribute to the metabolism of fluoxetine. This explains how fluoxetine achieves a steady-state concentration rather than increasing without limit.
Because fluoxetine's metabolism, like that of a number of other compounds including TCAs and other SSRIs, involves the CYP2D6 system, concomitant therapy with drugs also metabolized by this enzyme system (such as the TCAs) may lead to drug interactions (see PRECAUTIONS, Drug Interactions).
Accumulation and slow elimination
The relatively slow elimination of fluoxetine (elimination half-life of 1 to 3 days after acute administration and 4 to 6 days after chronic administration) and its active metabolite, norfluoxetine (elimination half-life of 4 to 16 days after acute and chronic administration), leads to significant accumulation of these active species in chronic use and delayed attainment of steady state, even when a fixed dose is used. After 30 days of dosing at 40 mg/day, plasma concentrations of fluoxetine in the range of 91 to 302 ng/mL and norfluoxetine in the range of 72 to 258 ng/mL have been observed. Plasma concentrations of fluoxetine were higher than those predicted by single-dose studies, because fluoxetine's metabolism is not proportional to dose. Norfluoxetine, however, appears to have linear pharmacokinetics. Its mean terminal half-life after a single dose was 8.6 days and after multiple dosing was 9.3 days. Steady-state levels after prolonged dosing are similar to levels seen at 4 to 5 weeks.
The long elimination half-lives of fluoxetine and norfluoxetine assure that, even when dosing is stopped, active drug substance will persist in the body for weeks (primarily depending on individual patient characteristics, previous dosing regimen, and length of previous therapy at discontinuation). This is of potential consequence when drug discontinuation is required or when drugs are prescribed that might interact with fluoxetine and norfluoxetine following the discontinuation of Selfemra®.
Liver Disease
As might be predicted from its primary site of metabolism, liver impairment can affect the elimination of fluoxetine. The elimination half-life of fluoxetine was prolonged in a study of cirrhotic patients, with a mean of 7.6 days compared with the range of 2 to 3 days seen in subjects without liver disease; norfluoxetine elimination was also delayed, with a mean duration of 12 days for cirrhotic patients compared with the range of 7 to 9 days in normal subjects. This suggests that the use of fluoxetine in patients with liver disease must be approached with caution. If fluoxetine is administered to patients with liver disease, a lower or less frequent dose should be used (see PRECAUTIONS, Use in Patients With Concomitant Illness and DOSAGE AND ADMINISTRATION).
Renal Disease
In depressed patients on dialysis (N = 12), fluoxetine administered as 20 mg once daily for 2 months produced steady-state fluoxetine and norfluoxetine plasma concentrations comparable with those seen in patients with normal renal function. While the possibility exists that renally excreted metabolites of fluoxetine may accumulate to higher levels in patients with severe renal dysfunction, use of a lower or less frequent dose is not routinely necessary in renally impaired patients (see PRECAUTIONS, Use in Patients With Concomitant Illness and DOSAGE AND ADMINISTRATION).
Clinical Trials
Premenstrual Dysphoric Disorder (PMDD)
The effectiveness of fluoxetine for the treatment of PMDD was established in 3 placebo-controlled trials (1 intermittent and 2 continuous dosing). In an intermittent dosing trial described below, patients met Diagnostic and Statistical Manual-4th edition (DSM-IV) criteria for PMDD. In the continuous dosing trials described below, patients met Diagnostic and Statistical Manual-3rd edition revised (DSM-IIIR) criteria for Late Luteal Phase Dysphoric Disorder (LLPDD), the clinical entity now referred to as PMDD in the DSM-IV. Patients on oral contraceptives were excluded from these trials; therefore, the efficacy of fluoxetine in combination with oral contraceptives for the treatment of PMDD is unknown.
In an intermittent dosing double-blind, parallel group study of 3 months duration, patients (N = 260 randomized) were treated with fluoxetine 10 mg/day, fluoxetine 20 mg/day, or placebo. Fluoxetine or placebo was started 14 days prior to the anticipated onset of menstruation and was continued through the first full day of menses. Efficacy was assessed with the Daily Record of Severity of Problems (DRSP), a patient-rated instrument that mirrors the diagnostic criteria for PMDD as identified in the DSM-IV, and includes assessments for mood, physical symptoms, and other symptoms. Fluoxetine 20 mg/day was shown to be significantly more effective than placebo as measured by the DRSP total score. Fluoxetine 10 mg/day was not shown to be significantly more effective than placebo on this outcome. The average DRSP total score decreased 38% on fluoxetine 20 mg/day, 35% on fluoxetine 10 mg/day, and 30% on placebo.
In the first continuous dosing double-blind, parallel group study of 6 months duration involving N = 320 patients, fixed doses of fluoxetine 20 and 60 mg/day given daily throughout the menstrual cycle were shown to be significantly more effective than placebo as measured by a Visual Analogue Scale (VAS) total score (including mood and physical symptoms). The average total VAS score decreased 7% on placebo treatment, 36% on 20 mg, and 39% on 60 mg fluoxetine. The difference between the 20 and 60 mg doses was not statistically significant. The following table shows the percentage of patients meeting criteria for either moderate or marked improvement on the VAS total score:
Improvement | N | Placebo | N | Fluoxetine 20 mg | N | Fluoxetine 60 mg |
Moderate | 94 | 11% | 95 | 37% | 85 | 38% |
Marked | 94 | 4% | 95 | 6% | 85 | 18% |
In a second continuous dosing double-blind, cross-over study, patients (N = 19) were treated with fluoxetine 20 to 60 mg/day (mean dose = 27 mg/day) and placebo daily throughout the menstrual cycle for a period of 3 months each. Fluoxetine was significantly more effective than placebo as measured by within cycle follicular to luteal phase changes in the VAS total score (mood, physical, and social impairment symptoms). The average VAS total score (follicular to luteal phase increase) was 3.8 times higher during placebo treatment than what was observed during fluoxetine treatment.
In another continuous dosing double-blind, parallel group study, patients with LLPDD (N = 42) were treated daily with fluoxetine 20 mg/day, bupropion 300 mg/day, or placebo for 2 months. Neither fluoxetine nor bupropion was shown to be superior to placebo on the primary endpoint, i.e., response rate [defined as a rating of 1 (very much improved) or 2 (much improved) on the CGI], possibly due to sample size.
Indications and Usage for Selfemra
Selfemra® is indicated for the treatment of premenstrual dysphoric disorder (PMDD).
The efficacy of fluoxetine in the treatment of PMDD was established in 3 placebo-controlled trials (see CLINICAL TRIALS).
The essential features of PMDD, according to the DSM-IV, include markedly depressed mood, anxiety or tension, affective lability, and persistent anger or irritability. Other features include decreased interest in usual activities, difficulty concentrating, lack of energy, change in appetite or sleep, and feeling out of control. Physical symptoms associated with PMDD include breast tenderness, headache, joint and muscle pain, bloating, and weight gain. These symptoms occur regularly during the luteal phase and remit within a few days following onset of menses; the disturbance markedly interferes with work or school or with usual social activities and relationships with others. In making the diagnosis, care should be taken to rule out other cyclical mood disorders that may be exacerbated by treatment with an antidepressant.
The effectiveness of Selfemra® in long-term use, that is, for more than 6 months, has not been systematically evaluated in controlled trials. Therefore, the physician who elects to use Selfemra® for extended periods should periodically reevaluate the long-term usefulness of the drug for the individual patient.
Contraindications
Selfemra® is contraindicated in patients known to be hypersensitive to it.
Monoamine Oxidase Inhibitors
There have been reports of serious, sometimes fatal, reactions (including hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, and mental status changes that include extreme agitation progressing to delirium and coma) in patients receiving fluoxetine in combination with a monoamine oxidase inhibitor (MAOI), and in patients who have recently discontinued fluoxetine and are then started on an MAOI. Some cases presented with features resembling neuroleptic malignant syndrome. Therefore, fluoxetine should not be used in combination with an MAOI, or within a minimum of 14 days of discontinuing therapy with an MAOI. Since fluoxetine and its major metabolite have very long elimination half-lives, at least 5 weeks [perhaps longer, especially if fluoxetine has been prescribed chronically and/or at higher doses (see CLINICAL PHARMACOLOGY, Accumulation and slow elimination)] should be allowed after stopping fluoxetine before starting an MAOI.
Pimozide
Concomitant use in patients taking pimozide is contraindicated (see PRECAUTIONS).
Thioridazine
Thioridazine should not be administered with Selfemra® or within a minimum of 5 weeks after Selfemra® has been discontinued (see WARNINGS).
Warnings
Clinical Worsening and Suicide Risk
Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older.
The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug versus placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1.
Age Range | Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated |
Increases Compared to Placebo | |
< 18 | 14 additional cases |
18 to 24 | 5 additional cases |
Decreases Compared to Placebo | |
25 to 64 | 1 fewer case |
≥ 65 | 6 fewer cases |
No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide.
It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression.
All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases.
The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality.
Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms.
If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms (see PRECAUTIONS and DOSAGE AND ADMINISTRATION, Discontinuation of Treatment With Selfemra®, for a description of the risks of discontinuation of Selfemra®).
Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for Selfemra® should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose.
It should be noted that Selfemra® is not approved for use in treating any indications in the pediatric population.
Screening Patients for Bipolar Disorder
A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that Selfemra® is not approved for use in treating bipolar depression.
Rash and Possibly Allergic Events
In 4 clinical trials for PMDD, 4% of 415 patients treated with fluoxetine reported rash and/or urticaria. None of these cases were classified as serious and 2 of 415 patients (both receiving 60 mg) were withdrawn from treatment because of rash and/or urticaria.
In U.S. fluoxetine clinical trials for conditions other than PMDD, 7% of 10,782 patients developed various types of rashes and/or urticaria. Among the cases of rash and/or urticaria reported in premarketing clinical trials, almost a third were withdrawn from treatment because of the rash and/or systemic signs or symptoms associated with the rash. Clinical findings reported in association with rash include fever, leukocytosis, arthralgias, edema, carpal tunnel syndrome, respiratory distress, lymphadenopathy, proteinuria, and mild transaminase elevation. Most patients improved promptly with discontinuation of fluoxetine and/or adjunctive treatment with antihistamines or steroids, and all patients experiencing these events were reported to recover completely.
In premarketing clinical trials of fluoxetine for conditions other than PMDD, 2 patients are known to have developed a serious cutaneous systemic illness. In neither patient was there an unequivocal diagnosis, but one was considered to have a leukocytoclastic vasculitis, and the other, a severe desquamating syndrome that was considered variously to be a vasculitis or erythema multiforme. Other patients have had systemic syndromes suggestive of serum sickness.
Since the introduction of fluoxetine for other indications, systemic events, possibly related to vasculitis and including lupus-like syndrome, have developed in patients with rash. Although these events are rare, they may be serious, involving the lung, kidney, or liver. Death has been reported to occur in association with these systemic events.
Anaphylactoid events, including bronchospasm, angioedema, laryngospasm, and urticaria alone and in combination, have been reported.
Pulmonary events, including inflammatory processes of varying histopathology and/or fibrosis, have been reported rarely. These events have occurred with dyspnea as the only preceding symptom.
Whether these systemic events and rash have a common underlying cause or are due to different etiologies or pathogenic processes is not known. Furthermore, a specific underlying immunologic basis for these events has not been identified. Upon the appearance of rash or of other possibly allergic phenomena for which an alternative etiology cannot be identified, Selfemra® should be discontinued.
Serotonin Syndrome or Neuroleptic Malignant Syndrome (NMS)-Like Reactions
The development of a potentially life-threatening serotonin syndrome, or Neuroleptic Malignant Syndrome (NMS)-like reactions, has been reported with SNRIs and SSRIs alone, including Selfemra® treatment, but particularly with concomitant use of serotonergic drugs (including triptans) with drugs which impair metabolism of serotonin (including MAOIs), or with antipsychotics or other dopamine antagonists. Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome, which includes hyperthermia, muscle rigidity, autonomic instability with possible rapid fluctuation of vital signs, and mental status changes. Patients should be monitored for the emergence of serotonin syndrome or NMS-like signs and symptoms.
The concomitant use of Selfemra® with MAOIs intended to treat depression is contraindicated (see CONTRAINDICATIONS and PRECAUTIONS, Drug Interactions).
If concomitant treatment of Selfemra® with a 5-hydroxytryptamine receptor agonist (triptan) is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see PRECAUTIONS, Drug Interactions).
The concomitant use of Selfemra® with serotonin precursors (such as tryptophan) is not recommended (see PRECAUTIONS, Drug Interactions).
Treatment with fluoxetine and any concomitant serotonergic or antidopaminergic agents, including antipsychotics, should be discontinued immediately if the above events occur and supportive symptomatic treatment should be initiated.
Potential Interaction With Thioridazine
In a study of 19 healthy male subjects, which included 6 slow and 13 rapid hydroxylators of debrisoquin, a single 25 mg oral dose of thioridazine produced a 2.4 fold higher Cmax and a 4.5 fold higher AUC for thioridazine in the slow hydroxylators compared with the rapid hydroxylators. The rate of debrisoquin hydroxylation is felt to depend on the level of CYP2D6 isozyme activity. Thus, this study suggests that drugs which inhibit CYP2D6, such as certain SSRIs, including fluoxetine, will produce elevated plasma levels of thioridazine (see PRECAUTIONS).
Thioridazine administration produces a dose-related prolongation of the QTc interval, which is associated with serious ventricular arrhythmias, such as torsade de pointes-type arrhythmias, and sudden death. This risk is expected to increase with fluoxetine-induced inhibition of thioridazine metabolism (see CONTRAINDICATIONS).
Precautions
General
Abnormal Bleeding
SSRIs and SNRIs, including fluoxetine, may increase the risk of bleeding events. Concomitant use of aspirin, non-steroidal anti-inflammatory drugs, warfarin, and other anti-coagulants may add to this risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages.
Patients should be cautioned about the risk of bleeding associated with the concomitant use of fluoxetine and NSAIDs, aspirin, or other drugs that affect coagulation (see Drug Interactions).
Anxiety and Insomnia
In 2 placebo-controlled trials of fluoxetine in PMDD, treatment-emergent adverse events were assessed. Rates were as follows for fluoxetine 20 mg (the recommended dose) continuous and intermittent pooled, fluoxetine 60 mg continuous, and pooled placebo, respectively: anxiety (3%, 9%, and 4%); nervousness (5%, 9%, and 3%); and insomnia (9%, 26%, and 7%). For individual rates for fluoxetine 20 mg given as continuous and intermittent dosing, see Table 2 and accompanying footnote under ADVERSE REACTIONS. Events associated with discontinuation for fluoxetine 20 mg continuous and intermittent pooled, fluoxetine 60 mg continuous, and pooled placebo, respectively, were: anxiety (0%, 6%, and 1%); nervousness (1%, 0%, and 0.5%); and insomnia (1%, 4%, and 0.5%). In U.S. placebo-controlled clinical trials of fluoxetine for other approved indications, anxiety, nervousness, and insomnia have been among the most commonly reported adverse events (see ADVERSEREACTIONS, Table 3).
Altered Appetite and Weight
In 2 placebo-controlled trials of fluoxetine in PMDD, rates for anorexia were as follows for fluoxetine 20 mg (the recommended dose) continuous and intermittent pooled, fluoxetine 60 mg continuous, and pooled placebo, respectively: 4%, 13%, and 2%. For individual rates for fluoxetine 20 mg continuous and intermittent, see footnote accompanying Table 2 under ADVERSE REACTIONS. In 2 placebo-controlled trials (only one of which included a dose of 60 mg/day), potentially clinically significant weight gain (≥ 7%) occurred in 8% of patients on fluoxetine 20 mg, 6% of patients on fluoxetine 60 mg, and 1% of patients on placebo. Potentially clinically significant weight loss (≥ 7%) occurred in 7% of patients on fluoxetine 20 mg, 12% of patients on fluoxetine 60 mg, and 3% of patients on placebo. In U.S. placebo-controlled clinical trials of fluoxetine for other approved indications, changes in appetite and weight have also been reported (see Table 3 and ADVERSE REACTIONS, Other Events Observed in U.S. Clinical Trials).
Activation of Mania/Hypomania
No patients treated with fluoxetine in 4 PMDD clinical trials (N = 415) reported mania/hypomania. In all U.S. fluoxetine clinical trials for conditions other than PMDD, 0.7% of 10,782 patients reported mania/hypomania. Activation of mania/hypomania may occur with medications used to treat depression, especially in patients predisposed to Bipolar Affective Disorder.
Hyponatremia
Hyponatremia may occur as a result of treatment with SSRIs and SNRIs, including fluoxetine. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Cases with serum sodium lower than 110 mmol/L have been reported and appeared to be reversible when Selfemra® was discontinued. Elderly patients may be at greater risk of developing hyponatremia with SSRIs and SNRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk. Discontinuation of fluoxetine should be considered in patients with symptomatic hyponatremia and appropriate medical intervention should be instituted.
Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. More severe and/or acute cases have been associated with hallucination, syncope, seizure, coma, respiratory arrest, and death.
Seizures
No patients treated with fluoxetine in 4 PMDD clinical trials (N = 415) reported seizures. In all U.S. fluoxetine clinical trials for conditions other than PMDD, 0.2% of 10,782 patients reported seizures. Antidepressant medication should be introduced with care in patients with a history of seizures.
The Long Elimination Half-Lives of Fluoxetine and its Metabolites
Because of the long elimination half-lives of the parent drug and its major active metabolite, changes in dose will not be fully reflected in plasma for several weeks, affecting both strategies for titration to final dose and withdrawal from treatment (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).
Use in Patients With Concomitant Illness
Clinical experience with fluoxetine in patients with concomitant systemic illness is limited. Caution is advisable in using fluoxetine in patients with diseases or conditions that could affect metabolism or hemodynamic responses.
Fluoxetine has not been evaluated or used to any appreciable extent in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were systematically excluded from clinical studies during the product's premarket testing. However, the electrocardiograms of 312 patients who received fluoxetine in double-blind trials for a condition other than PMDD were retrospectively evaluated; no conduction abnormalities that resulted in heart block were observed. The mean heart rate was reduced by approximately 3 beats/min.
In subjects with cirrhosis of the liver, the clearances of fluoxetine and its active metabolite, norfluoxetine, were decreased, thus increasing the elimination half-lives of these substances (see CLINICAL PHARMACOLOGY, Liver Disease). A lower or less frequent dose should be used in patients with cirrhosis (see DOSAGE AND ADMINISTRATION).
Studies in depressed patients on dialysis did not reveal excessive accumulation of fluoxetine or norfluoxetine in plasma (see CLINICAL PHARMACOLOGY, Renal Disease). Use of a lower or less frequent dose for renally impaired patients is not routinely necessary (see DOSAGE AND ADMINISTRATION).
In patients with diabetes, fluoxetine may alter glycemic control. Hypoglycemia has occurred during therapy with fluoxetine, and hyperglycemia has developed following discontinuation of the drug. As is true with many other types of medication when taken concurrently by patients with diabetes, insulin and/or oral hypoglycemic dosage may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Discontinuation of Treatment with Selfemra®
During marketing of fluoxetine and other SSRIs and SNRIs (serotonin and norepinephrine reuptake inhibitors), there have been spontaneous reports of adverse events occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g., paresthesias such as electric shock sensations), anxiety, confusion, headache, lethargy, emotional lability, insomnia, and hypomania. While these events are generally self-limiting, there have been reports of serious discontinuation symptoms. Patients should be monitored for these symptoms when discontinuing treatment with Selfemra®. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. Plasma fluoxetine and norfluoxetine concentration decrease gradually at the conclusion of therapy, which may minimize the risk of discontinuation symptoms with this drug (see DOSAGE AND ADMINISTRATION).
Interference With Cognitive and Motor Performance
Any psychoactive drug may impair judgment, thinking, or motor skills, and patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that the drug treatment does not affect them adversely.
Information for Patients
Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with Selfemra® and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illnesses, and Suicidal Thoughts or Actions” is available for Selfemra®. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document.
Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking Selfemra®.
Abnormal Bleeding
Patients should be cautioned about the concomitant use of fluoxetine and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents have been associated with an increased risk of bleeding (see PRECAUTIONS, Abnormal Bleeding).
Clinical Worsening and Suicide Risk
Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient's prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient's presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication.
Serotonin Syndrome
Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of Selfemra® and triptans, tramadol or other serotonergic agents.
Laboratory Tests
There are no specific laboratory tests recommended.
Drug Interactions
As with all drugs, the potential for interaction by a variety of mechanisms (e.g., pharmacodynamic, pharmacokinetic drug inhibition or enhancement, etc.) is a possibility (see CLINICAL PHARMACOLOGY, Accumulation and slow elimination).
Drugs Metabolized by CYP2D6
Fluoxetine inhibits the activity of CYP2D6, and may make individuals with normal CYP2D6 metabolic activity resemble a poor metabolizer.
Coadministration of fluoxetine with other drugs that are metabolized by CYP2D6, including certain antidepressants (e.g., TCAs), antipsychotics (e.g., phenothiazines and most atypicals), and antiarrhythmics (e.g., propafenone, flecainide, and others) should be approached with caution. Therapy with medications that are predominantly metabolized by the CYP2D6 system and that have a relatively narrow therapeutic index (see list below) should be initiated at the low end of the dose range if a patient is receiving fluoxetine concurrently or has taken it in the previous 5 weeks. Thus, her dosing requirements resemble those of poor metabolizers. If fluoxetine is added to the treatment regimen of a patient already receiving a drug metabolized by CYP2D6, the need for decreased dose of the original medication should be considered. Drugs with a narrow therapeutic index represent the greatest concern (e.g., flecainide, propafenone, vinblastine, and TCAs). Due to the risk of serious ventricular arrhythmias and sudden death potentially associated with elevated plasma levels of thioridazine, thioridazine should not be administered with fluoxetine or within a minimum of 5 weeks after fluoxetine has been discontinued (see CONTRAINDICATIONS and WARNINGS).
Drugs Metabolized by CYP3A4
In an in vivo interaction study involving coadministration of fluoxetine with single doses of terfenadine (a CYP3A4 substrate), no increase in plasma terfenadine concentrations occurred with concomitant fluoxetine. In addition, in vitro studies have shown ketoconazole, a potent inhibitor of CYP3A4 activity, to be at least 100 times more potent than fluoxetine or norfluoxetine as an inhibitor of the metabolism of several substrates for this enzyme, including astemizole, cisapride, and midazolam. These data indicate that fluoxetine's extent of inhibition of CYP3A4 activity is not likely to be of clinical significance.
CNS Active Drugs
The risk of using fluoxetine in combination with other CNS active drugs has not been systematically evaluated. Nonetheless, caution is advised if the concomitant administration of fluoxetine and such drugs is required. In evaluating individual cases, consideration should be given to using lower initial doses of the concomitantly administered drugs, using conservative titration schedules, and monitoring of clinical status (see CLINICAL PHARMACOLOGY, Accumulation and slow elimination).
Anticonvulsants
Patients on stable doses of phenytoin and carbamazepine have developed elevated plasma anticonvulsant concentrations and clinical anticonvulsant toxicity following initiation of concomitant fluoxetine treatment.
No comments:
Post a Comment